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Abstract. We present a new ab initio theoretical formulation to calculate Zeff and hence the positron
annihilation rates directly from the onshell and offshell (half) scattering amplitudes. The method does not
require any explicit use of the scattering wave function and is formally exact within the framework of the
well established Lippmann-Schwinger equation. It could serve as an effective tool as all the T -, K-, and
S-matrix formulations, yield directly the scattering amplitudes; not the wave function. Numerical test of
the method is presented considering sample static calculations in positron-hydrogen and positron-helium
systems.

PACS. 03.65.Nk Scattering theory – 34.85.+x Positron scattering – 71.60.+z Positron states – 78.70.Bj
Positron annihilation

1 Introduction

Positron, being an antiparticle, interacts intimately
(short-range interaction) with atomic electrons due to the
absence of any restriction imposed by the Pauli Exclu-
sion principle. Thus their annihilation studies, namely, the
Positron annihilation spectroscopy and Positronium anni-
hilation lifetime spectroscopy have emerged as two front
line research areas, as they are expected to provide a more
detail account of their close interactions with the target
and bear the potential of various modern technological
applications [1–3].

Normally, the theoretical study of annihilation rate
requires the evaluation of the scattering wave function
which contains the short-range information of the scat-
tering process [4–6]. However, it is of fundamental impor-
tance to note that most scattering calculations (T -, K-,
S-matrix) yield directly the scattering amplitudes which
reflect only the asymptotic behavior of the wave func-
tion. Thus, these calculations can not provide any informa-
tion for the annihilation process. Consequently, attempts
were made to use the scattering amplitudes to evaluate
the annihilation parameters [7,8]. Rhyzikh and Mitroy [7]
presents a method of calculating Zeff in e+−H scatter-
ing through the evaluation of the transition amplitude
for e+ + H → 2γ + p calculated employing the scatter-
ing T -matrix results. Gribakin [8] employs an approximate
method of evaluating the Zeff from on-shell T -matrix ele-
ments. Here, we present a new ab initio theoretical formu-
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lation based on the integral equation formalism, whereby
we express Zeff directly in terms of T -matrix elements
and facilitate its calculation exactly from the on-shell and
half-onshell T -matrix scattering amplitudes (without any
explicit use of the scattering wave function). Defining a
new Z-matrix we present the Zeff in a coupled-channel
form exactly similar to the known T -matrix formulation.
The introduction of Z-matrix facilitates the partial wave
representation of the coupled equations which are useful
for analytical and numerical evaluations.

Theoretically, the positron annihilation rates (Λ) are
expressed in terms of Zeff , the effective number of target
electrons available to the incoming positron as [4–6,8]:

Λ = πr20cZeffN s−1 (1)

and Zeff is defined in terms of the scattering wave function
|ψ+

k 〉 as [4–6]

Zeff (k) =
〈
ψ+

k |
N∑

j=1

δ(rj − x)|ψ+
k

〉
(2)

where r0 is the classical electron radius; c is the speed of
light; 4πr20c is the non-relativistic electron-positron an-
nihilation rate; πr20c is the same for the spin-averaged
case of two-gamma annihilation (which excludes electron-
positron triplet state contribution and considers only sin-
glet state annihilation). N is the number density of atoms
or molecules in the medium; δ is the Dirac δ-function; x
and rj are the positron and the electron co-ordinates.
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〈ψ+
k |∆|ψ+

k 〉 = 〈kφn|∆|kφn〉

+
1

(2π)3

∑
n′′

∫
d3k′′

〈kφn|T |k′′φn′′〉〈k′′φn′′ |∆|kφn〉
E − E′′

n − i0
+

1

(2π)3

∑
n′′

∫
d3k′′

〈kφn|∆|k′′φn′′〉〈k′′φn′′ |T |kφn〉
E −E′′

n + i0

+
1

(2π)6

∑
n′′

∑
m′′

∫
d3k′′1

∫
d3k′′2

〈kφn|T |k′′1φn′′〉〈k′′1φn′′ |∆|k′′2φ′′
m〉〈k′′2φm′′ |T |kφn〉

(E − E′′
n − i0)(E −E′′

m + i0)
. (11)

Here we present a new formulation whereby the r.h.s.
of equation (2) is represented exactly by the onshell and
half-offshell coupled-channel T -matrix scattering ampli-
tudes, thus facilitating the evaluation of Zeff without
any explicit use of the scattering wave function. When
a positron collides with a target, it can have direct as
well as rearrangement scattering. So, we present our for-
mulation in two different sections consisting of (I) direct
(elastic and inelastic) scattering and (II) direct plus rear-
rangement (positronium formation) scattering.

2 Positron annihilation considering the direct
scattering channels

In this section, we consider the direct scattering of
positrons from atomic (φn) targets where the total wave
function is expanded as [9]:

ψ+
k (x, r1, r2, ...rN ) =

∑
n

Fn(x)φn(r1, r2, ...rN ) (3)

where Fn’s are the expansion coefficients, representing the
motion of the positron with momentum k; rj is the co-
ordinate of the jth electron and x is that of the positron.
The total Hamiltonian is partitioned as

H = H0
d + Vd (4)

whereH0
d is the unperturbed part of the total Hamiltonian

in the direct scattering channel of the positron and the
atom and Vd is the positron-atom interaction potential.
The unperturbed and the total Hamiltonians satisfy the
following eigen-value equations:

H0
d |kφn〉 = E|kφn〉 (5)

(H0
d + Vd)|ψ+

k 〉 = E|ψ+
k 〉 (6)

where E = k2/2m − EA is the total energy; EA is the
binding energy of the initial target atom (φn); m and k
are the reduced mass and the onshell momentum of the
positron. With the eigen-value equations (5, 6) for the
unperturbed and the total Hamiltonians, one can write
the Lippmann-Schwinger equation for the scattering wave
function |ψ+

k 〉 as [9,10]:

|ψ+
k 〉 = |kφn〉 +

1
E −H0

d + i0
Vd|ψ+

k 〉. (7)

Using the closure relation (2π)−3
∑

n′′
∫
d3k′′

|k′′φn′′ 〉〈k′′φn′′ | = 1, and using the T -matrix defini-
tion: Vd|ψ+

k 〉 = T |kφn〉, in equation (7), we arrive at the
expression for the total scattering wave function in terms

of the T -matrix elements:

|ψ+
k 〉 = |kφn〉

+
1

(2π)3

∞∑
n′′=1

∫
d3k′′

|k′′φn′′〉〈k′′φn′′ |T |kφn〉
E − E′′

n + i0
. (8)

The total scattering wave function can be evaluated from
this equation [7]. However, we generally solve it for the
scattering T -matrix amplitudes obtained by multiplying
equation (8) by Vd and projecting with 〈k′φn′ | and using
the T -matrix definition: Vd|ψ+

k 〉 = T |kφn〉:

〈k′φn′ |T |kφn〉 = 〈k′φn′ |Vd|kφn〉
+

1
(2π)3

∑
n′′

∫
d3k′′

〈k′φn′ |Vd|k′′φn′′〉〈k′′φn′′ |T |kφn〉
E − E′′

n + i0
.

(9)

Equation (9), in its one-dimensional partial-wave form
(Eq. (18)), is exactly solved using the matrix inversion
method [11]. Simultaneous equations are formed by re-
placing k′ with various values of k′′ on which the radial
integral over dk′′ is discretized. The solutions of the simul-
taneous equations give us the both-onshell (〈k′φn′ |T |kφn〉)
and half-offshell (〈k′′φn′ |T |kφn〉) T -matrix amplitudes for
various values of k′′, where k,k′ are on shell momenta
and k′′ are the off-shell ones. While the solutions for the
onshell T -matrix elements reflect the asymptotic behav-
ior of the wave function and provide the physical cross-
sections, the half-offshell elements are usually thrown
away. We understand that the latter might contain the
short-range properties of the wave function and they to-
gether with the on-shell elements can lead to an exact
evaluation of the Zeff . We multiply equation (8) from left
by

∑N
j=1 δ(x − rj) = ∆, (say) and project it by 〈ψ+

k | to
obtain:

〈ψ+
k |∆|ψ+

k 〉 = 〈ψ+
k |∆|kφn〉

+
1

(2π)3
∑
n′′

∫
d3k′′

〈ψ+
k |∆|k′′φn′′ 〉〈k′′φn′′ |T |kφn〉

E − E′′
n + i0

. (10)

At this stage, to calculate Zeff , which is equivalent to
〈ψ+

k |∆|ψ+
k 〉 (see Eq. (2)), we have two options: (i) using

equation (8), substitute for 〈ψ+
k | in the r.h.s. of (10) or (ii)

evaluate 〈ψ+
k |∆|kφn〉 separately and substitute in equa-

tion (10). The first case leads to a complicated equation
as follows:

see equation (11) above.
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〈k′φn′ |X|kφn〉 =
∑

J

∑
M

∑
L

∑
ML

∑
L′

∑
ML′

〈L′l′,ML′ml′ |JM〉Y ∗
L′ML′ (k̂

′)〈Ll,MLml|JM〉YLML(k̂)XJ (n′l′L′k′, nlLk) (17)

This equation, although can be solved numerically, needs
an extra effort to evaluate the principal value part of the
last term, which contains a product of two singularities
arising out of the product of Greens functions. We, there-
fore, look for the evaluation of 〈kφn|∆|ψ+

k 〉 by projecting
equation (8) with 〈kφn|∆:

〈k′φn′ |∆|ψ+
k 〉 = 〈k′φn′ |∆|kφn〉

+
1

(2π)3
∑
n′′

∫
d3k′′

〈k′φn′ |∆|k′′φn′′ 〉〈k′′φn′′ |T |kφn〉
E − E′′

n + i0
.

(12)

We solve this equation exactly (which is a very straight
forward numerical summation) and substitute the com-
plex conjugate of 〈k′φn′ |∆|ψ+

k 〉 in equation (10) to
get Zeff . However, like the T -matrix equation, we solve
them in their one-dimensional partial wave form. To ar-
rive at the corresponding partial wave equations for (12)
and (10), we define the matrices D and Z as:

∆|ψ+
k 〉 = D|kφn〉 (13)

〈ψ+
k |D = 〈kφn|Z (14)

and rewrite equations (12) and (10) formally in terms of
them:

〈k′φn′ |D|kφn〉 = 〈k′φn′ |∆|kφn〉
+

1
(2π)3

∑
n′′

∫
d3k′′

〈k′φn′ |∆|k′′φn′′ 〉〈k′′φn′′ |T |kφn〉
E − E′′

n + i0
(15)

and

〈kφn|Z|kφn〉 = 〈kφn|D̄|kφn〉

+
1

(2π)3
∑
n′′

∫
d3k′′

〈kφn|D̄|k′′φn′′〉〈k′′φn′′ |T |kφn〉
E − E′′

n + i0
(16)

where D̄ is the complex conjugate of D. Using a partial
wave decomposition of the form:

see equation (17) above

where, X ≡ T, V,D,∆, orZ; n, l are the principal and
orbital quantum number of the target and L is the or-
bital quantum number of the moving positron in the ini-
tial state; primed quantities denote the same for the final
state. With the above expansion, the scattering T -matrix
equation and the above two equations for the D- and Z-
matrices reduce to:

TJ(τ ′, k′; τ, k) = VJ (τ ′, k′; τk)

+
m′′

4π3

∑
τ ′′

∫
dk′′k′′2

VJ (τ ′, k′; τ ′′, k′′)TJ (τ ′′, k′′; τ, k)
k2

τ ′′ − k′′2 + i0
(18)

DJ(τ ′, k′; τ, k) = ∆J(τ ′, k′; τk)

+
m′′

4π3

∑
τ ′′

∫
dk′′k′′2

∆J(τ ′, k′; τ ′′, k′′)TJ(τ ′′, k′′; τ, k)
k2

τ ′′ − k′′2 + i0
(19)

ZJ(τ ′, k′; τ, k) = D̄J(τ ′, k′; τk)

+
m′′

4π3

∑
τ ′′

∫
dk′′k′′2

D̄J(τ ′, k′; τ ′′, k′′)TJ(τ ′′, k′′; τ, k)
k2

τ ′′ − k′′2 + i0
(20)

where τ ≡ (nlL) and τ ′ ≡ (n′l′L′); m′′ is the reduced
mass of the projectile in the intermediate state (here,
m′′ = m = 1 in au). We suppress the suffix d from Vd

for convenience.
In terms of partial wave Z-matrices, Zeff (k2) comes

out to be:

Zeff (k2) =
∑

J

2J + 1
4π

ZJ (nlLk;nlLk). (21)

While equation (18) is generally used to study positron-
atom scattering, equations (19, 20) are particularly use-
ful to evaluate Zeff from the onshell and half-offshell T -
matrix outputs of equation (18). We shall present a simple
numerical account on e+−He scattering to verify the code
and compare the numbers, but beforehand we present a
general formula for Zeff by inserting equation (19) into
equation (20). This latter is of particular interest, as it
will explicitly demonstrate how the Zeff is dependent on
the T -matrices. For this, we first rewrite equations (18–20)
in the following notations:

Tk′k = Vk′k − iVk′k′Tk′k + Vk′k′′G0(k′, k′′)Tk′′k (22)

Dk′k = ∆k′k − i∆k′k′Tk′k +∆k′p′′G0(k′, p′′)Tp′′k (23)

Zk′k = D̄k′k − iD̄k′k′Tkk + D̄k′q′′G0(k′, q′′)Tq′′k (24)

where summations over intermediate states are implied
and off-shell momenta are represented by k′′, p′′ and q′′.
In the above, we have used the following relation for the
complex Greens function

G+
0 (k2 − k′′2) =

1
k2 − k′′2 + i0

= −iπδ(k2 − k′′2) +
P

k2 − k′′2
(25)

to expand it into real and imaginary parts; P represents
principal value integration; G0 represents the real (princi-
pal value) part of G+

0 . Inserting D̄kk in equation (24) we
obtain an explicit relation for Zeff (k2) ≡ Zkk:

Zkk = ∆kk + i∆kk[T ∗
kk − Tkk] + Tkp′′G0∆p′′k

+∆kq′′G0Tq′′k +∆kk|Tkk|2 + Tkp′′G0∆p′′q′′G0Tq′′k
(26)

= ∆kk + 2∆kkIm[Tkk] +∆kk|Tkk|2 + Tkp′′G0∆p′′k

+∆kq′′G0Tq′′k + Tkp′′G0∆p′′q′′G0Tq′′k (27)



324 The European Physical Journal D

Fig. 1. Theoretical values of Zeff in various approximations as
a function of positron energy for the target of atomic helium.

where ∆pq corresponds to plane-wave value of Zeff for
the initial and final momenta p and q. Im[Tkk] and |Tkk|2
are proportional to physical cross-sections (representing
the asymptotic behavior of the wave function). Others are
interference terms, linear and quadratic in the half-offshell
T -matrix elements, and expected to play a crucial role at
low and intermediate energies. To understand their role,
and to check the normalizations of equations (19, 20), we
provide a numerical test below.

2.1 Implications of the terms of equations (19, 20)

To understand the implications of the various terms of
equations (19, 20) (Eq. (18) is well established in liter-
ature) we perform two sample calculations with e+−H
and e+−He systems, considering the first order term of
the summation (3), i.e., considering the elastic channel
only, and evaluate the Zeff using the resulting onshell
and half-onshell T -matrix elements. We use atomic units
throughout and use delta-function normalization for the
plane wave.

We note that equations (18–20) and (22–24) are equiv-
alent. First, we describe the results on positron-helium
system. In Figure 1, we plot the dotted curve which is ob-
tained considering only the plane wave parts (first term
of the r.h.s.) of equations (22–24). This plane wave ap-
proximation gives a value of Zeff = 2.0 (= Z) as was
expected and provides the normalization. Next we con-
sider first two terms of the r.h.s. of equations (22–24) and
plot the result as dashed curve. This approximation is
equivalent of considering the plane wave and the onshell

T -matrix contributions of equations (18–20) leaving aside
the half-offshell contribution (particular integral part of
the Greens function). We obtain a lower value of Zeff with
increasing energies, signaling the manifestation of a repul-
sive potential at higher energies. Now, the solid curve is
obtained with all the three terms of equations (22–24).
That is, considering both the onshell and the half-offshell
contributions together with the plane wave. The static
potential in a e+−He scattering is repulsive and conse-
quently it lowers the value of Zeff (and hence the annihi-
lation rate). We compare the solid curve with the results of
a Schwinger Multi-Channel (SMC) calculation on e+−He
with the same physical content (considering static inter-
action only) [12]. Both the curves agree quite well. The
marginal difference in the Zeff value between the present
and the SMC calculation is supposed to be acceptable
since, the wave functions for helium used in these two
calculations are different (we use the Roothaan-Hatree-
Fock five-term wave function of Clementi and Roetti [13]
for He).

To understand the difference and to make a fur-
ther check, we employ the equations to e+−H sys-
tem, where the target wave function is exact, and
evaluate Zeff at k = 0.1, 0.2, 0.3, 0.4, 0.5 a.u. in the
same static charge distribution approximation. Using
thirty two gauss-quadrature points to discretize prin-
cipal value integration, we obtain the Zeff values
of 0.4036, 0.3929, 0.3867, 0.3800, 0.3721 compared to the
values 0.4039, 0.3989, 0.3909, 0.3804, 0.3678 obtained by
Ryzhikh and Mitroy [7] using forty gauss-quadrature
points. Studying the convergence we find that 36 or
40 gauss-quadrature points are not sufficient to evalu-
ate Zeff for a discretization of the principal value in-
tegration as:

∫ ∞
0 dk′′ =

∫ 2ki

0 dk′′ +
∫ ∞
2ki

dk′′, where an
even number of gauss-quadrature points are used for the
0 → 2ki integral so that although we approach to the
singularity, we never meet that [14]. We cannot comment
upon the convergence pattern in the numerical procedure
adopted in reference [7]. In our scheme, we find that the
results are very slowly convergent. At very low energies
(k = 0.1, 0.2) the numerical procedure overestimates the
results for low gauss-quadrature points while at k = 0.3
and above it underestimates the results. Employing sev-
enty two gauss-quadrature points, we find the results as
0.3982, 0.3951, 0.3911, 0.3855, 0.3784 which are expected
to be convergent within 0.05%.

The results provided in Figure 1 are aimed at under-
standing the new equations (19, 20) in numerical terms.
The results shown for the static interaction only and is
nothing to do with the physically converged result. To
arrive at a physically converged result for the Zeff , full
expansion basis indicated in equations (19, 20) need to
be employed which requires the T -matrix amplitudes and
is not the goal of this work. In this work, we are in-
terested to stress that available T -matrix elements [17]
can be readily employed in equations (19, 20) to cal-
culate the annihilation parameters. For cases where we
have K-matrix or S-matrix informations, the matrix ele-
ments can be transformed to T -matrix representation and
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〈k′φn′ |Td|kφn〉 = 〈k′φn′ |Vd|kφn〉 +
1

(2π)3

∑
n′′

∫
d3k′′

〈k′φn′ |Vd|k′′φn′′〉〈k′′φn′′ |Td|kφn〉
E − E′′

n + i0

+
1

(2π)3

∑
ν′′

∫
d3k′′

〈k′φn′ |(E′′
ν + Vc −En′)|k′′χν′′〉〈k′′χν′′ |Tc|kφn〉

E − E′′
ν + i0

(36)

〈k′χν′ |Tc|kφn〉 = 〈k′χν′ |Vc|kφn〉 +
1

(2π)3

∑
n′′

∫
d3k′′

〈k′χν′ |Vc|k′′φn′′〉〈k′′φn′′ |Td|kφn〉
E − E′′

n + i0

+
1

(2π)3

∑
ν′′

∫
d3k′′

〈k′χν′ |Vc|k′′χν′′〉〈k′′χν′′ |Tc|kφn〉
E − E′′

ν + i0
(37)

equations (19, 20) be employed to obtain the annihilation
parameters.

Regarding convergence, we mention that, in practice,
the results for the T -matrix equation (18) do not con-
verge easily unless the continuum effect is fully mani-
fested. Within the coupled channel framework the real and
virtual effects of the rearrangement channel of positron-
ium (Ps) formation introduce the continuum effect in the
theoretical formulation for positron scattering. This im-
plies that for a convergent description for the Zeff , the
above formalism need to be generalized further so that the
method accounts for the Ps formation channel explicitly.
Before presenting that generalization, we want to men-
tion that when one uses some model short-range and/or
polarization potentials alongside the static potential in the
T -matrix formalism to arrive at some meaningful results
for the positron-atom system, the above formalism can be
readily used.

3 Positron annihilation considering the direct
and the Ps-formation channels

When the possibility of a real or virtual positronium for-
mation is considered, through the capture of a target
electron by the incident positron, the theoretical formula-
tion for a single electron target differs from a multi elec-
tron target in the sense that for the latter case the Ps-
target(ion) wave function need to be formally antisym-
metrized. Here, we discuss them in two different sections
(Sects. 3.1 and 3.2).

3.1 Single electron target

For positron scattering from a single electron target, the
total wave function (3) can be expanded (considering Ps
formation) as [9,15]:

ψ+
k (x, r1) =

1√
2

[ ∑
n

Fn(x)φn(r1) +
∑

ν

Gν(ρ1)χν(t1)
]

(28)
where ρ1 = (r1+x)/2 and t1 = r1−x. Gν and χν represent
the moving and the bound-state (νth) positronium atom.
The total Hamiltonian is now partitioned as:

H = H0
d + Vd = H0

c + Vc (29)

where H0
d , H0

c are the unperturbed Hamiltonians in the
direct (d) and capture (c) channels satisfying the eigen-
value equations

H0
d |kφn〉 = En|kφn〉 (30)

H0
c |kχν〉 = Eν |kχν〉 (31)

and Vd and Vc are the interaction potentials therein.
En = k2

x/2 − EA and Eν = k2
Ps/4 − EPs; EA and EPs are

the binding energies of the initial target atom and the re-
arranged positronium atom; kx and kPs are the momenta
of the positron and the positronium. In terms of the two-
cluster channel-Greens-functions G0

d = (E − H0
d)−1 and

G0
c = (E−H0

c )−1, we take the Lippmann-Schwinger inte-
gral equation for the wave function as [16]:

|ψ+
k 〉 = |kφn〉 +G0

dTd|kφn〉 +G0
cTc|kφn〉 (32)

where, Td and Tc are defined as Vd|ψ+
k 〉 = Td|kφn〉 (here

Td ≡ T of Sect. 1) and Vc|ψ+
k 〉 = Tc|kφn〉. Using the follow-

ing closure relations for the direct and the rearrangement
channels,

1 =
1

(2π)3
∑
n′′

∫
dk′′|k′′φn′′〉〈k′′φn′′ | (33)

1 =
1

(2π)3
∑
ν′′

∫
dk′′|k′′χν′′〉〈k′′χν′′ | (34)

we rewrite equation (32) as:

|ψ+
k 〉 = |kφn〉 +

1
(2π)3

∑
n′′

∫
d3k′′

|k′′φn′′ 〉〈k′′φn′′ |Td|kφn〉
E − E′′

n + i0

+
1

(2π)3
∑
ν′′

∫
d3k′′

|k′′χν′′〉〈k′′χν′′ |Tc|kφn〉
E − E′′

ν + i0
. (35)

Here, E′′
n = k′′2/2−EA and E′′

ν = k′′2/4−EPs are the off-
shell energies in the direct (d) and the capture (c) chan-
nels. We construct the coupled equations by (1) multiply-
ing this equation with Vd and projecting out with 〈k′φn′ |
and (2) multiplying this equation with Vc and projecting
out with 〈k′χν′ |

see equations (36) and (37) above
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where in equation (36), we use Vd = H0
c + Vc − H0

d (see
Eq. (29)) and also use the eigen-value equations (30, 31).
Once the above coupled-equations are solved and we are
equipped with the T -matrix amplitudes 〈pφn′ |Td|kφn〉 and
〈qχν′ |Tc|kφn〉 for on-shell and off-shell values for the mo-
menta p and q, we can get Zeff in terms of them. To de-
duce Zeff , in terms of T -matrices, we project equation (35)
by 〈ψ+

k |∆ and arrive at:

〈ψ+
k |∆|ψ+

k 〉 = 〈ψ+
k |∆|kφn〉

+
1

(2π)3
∑
n′′

∫
d3k′′

〈ψ+
k |∆|k′′φn′′ 〉〈k′′φn′′ |Td|kφn〉

E − E′′
n + i0

+
1

(2π)3
∑
ν′′

∫
d3k′′

〈ψ+
k |∆|k′′χν′′〉〈k′′χν′′ |Tc|kφn〉

E − E′′
ν + i0

.

(38)

Now, 〈ψ+
k | from equation (35) may be substituted in the

r.h.s. of equation (38) to arrive at a direct expression
for Zeff . However, that will lead to a complicated equation
like (11). We rather develop simpler equations to evaluate
〈ψ+

k |∆|kφn〉 and 〈ψ+
k |∆|kχν〉 and substitute them back in

equation (38). For this, we project equation (35) from left
by 〈k′φn′ |∆ and 〈k′χν′ |∆ and obtain:

〈k′φn′ |∆|ψ+
k 〉 = 〈k′φn′ |∆|kφn〉

+
1

(2π)3
∑
n′′

∫
d3k′′

〈k′φn′ |∆|k′′φn′′ 〉〈k′′φn′′ |Td|kφn〉
E − E′′

n + i0

+
1

(2π)3
∑
ν′′

∫
d3k′′

〈k′φn′ |∆|k′′χν′′〉〈k′′χν′′ |Tc|kφn〉
E − E′′

ν + i0
(39)

〈k′χν′ |∆|ψ+
k 〉 = 〈k′χν′ |∆|kφn〉

+
1

(2π)3
∑
n′′

∫
d3k′′

〈k′χν′ |∆|k′′φn′′〉〈k′′φn′′ |Td|kφn〉
E − E′′

n + i0

+
1

(2π)3
∑
ν′′

∫
d3k′′

〈k′χν′ |∆|k′′χν′′〉〈k′′χν′′ |Tc|kφn〉
E − E′′

ν + i0
.

(40)

The above two equations are very straight forward to solve
as one need to carry only numerical integrations with
known values of Td, Tc and the calculated plane-wave ma-
trix elements concerning ∆ as inputs. We are not inter-
ested to repeat the calculations for Td and Tc and rather
hope that the existing T -matrix results [17] may be ap-
plied to calculate Zeff .

3.2 Many electron target

For multi-electron targets the formulation is very much
similar to that of Section 2.1, except few fundamen-
tal changes. Without repeating the whole thing, we
thus mention here about the necessary changes. For the

positron scattering from a multi-electron target, the cap-
ture channel need to be explicitly antisymmetrized and
expressed as:

ψ+
k (x, r1, r2, ...rN ) =

1√
2

[∑
n

Fn(x)φn(r1, ..., rN )

+A1

∑
νµ

Gνµ(ρ1)χν(t1)ϕµ(r2, ..., rN )

]
(41)

where ϕ represents the residual target ion and A1 is
the antisymmetrization operator, which antisymmetrizes
electron 1 with other target electrons. The initial tar-
get wave function φ is supposed to be antisymmetrized
implicitly. The total Hamiltonian is now partitioned as:
H = H0

d + Vd = H0
c(j) + Vc(j); where H0

c(j) and Vc(j) are
the unperturbed Hamiltonian and the Ps-target(ion) in-
teraction potential in the capture channel of the positron-
ium formation, with the jth electron being attached to the
positron. Accommodating the Pauli exclusion principle for
the rearrangement channel, the Lippmann-Schwinger in-
tegral equation is now written as:

|ψ+
k 〉 = |kφn〉 +G0

dTd|kφn〉 + AjG
0
c(j)Tc(j)|kφn〉 (42)

where Td and Tc are defined as Vd|ψ+
k 〉 = Td|kφn〉 (here

Td ≡ T of Sect. 1) and Vc(j)|ψ+
k 〉 = Tc(j)|kφn〉. Using fol-

lowing closure relations for the direct and the rearrange-
ment channels:

1 =
1

(2π)3

α∑
n′′=1

∫
dk′′|k′′φn′′〉〈k′′φn′′ | (43)

1 =
1

(2π)3
∑
ν′′

∑
µ′′

∫
dk′′|k′′j χν′′ϕµ′′〉〈k′′j χν′′ϕµ′′ | (44)

and proceeding in a similar way, we represent the
Lippmann-Schwinger equation (42) as:

|ψ+
k 〉 = |kφn〉 +

1
(2π)3

∑
n′′

∫
d3k′′

|k′′φn′′ 〉〈k′′φn′′ |Td|kφn〉
E − E′′

n + i0

+
1

(2π)3
∑
ν′′

∑
µ′′

∫
d3k′′

Aj |k′′j χν′′ϕµ′′〉〈k′′j χν′′ϕµ′′ |Tc(j)|kφn〉
E − E′′

νµ + i0
.

(45)

The rest of the procedures are exactly similar to those
described in Section 2.1 and are not repeated here.

In summary, we present a new ab initio methodology
to calculate Zeff from physical (onshell) and virtual (half-
onshell) scattering T -matrix amplitudes, without any
explicit use of the scattering wave function. The method-
ology is exact within the framework of the Lippmann-
Schwinger equation and thus the formalism reveals that
the crucial short-range information of a collision process
might have been embedded in the half-onshell scattering
amplitudes which we generally throw away after the scat-
tering calculation. The formulation presented here is for
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positron annihilation in atoms, but it could be universally
applied to other annihilation studies as long as the dy-
namics of the interacting particles (or clusters) can be
described by the well-known Lippmann-Schwinger type
equation. The methodology is expected to serve as an use-
ful tool for the annihilation studies as most of the scatter-
ing theories (T -matrix,K-matrix, S-matrix) yield directly
the scattering amplitudes. A similar T -matrix formulation
may also be derived for the pick-off annihilation of ortho-
positronium collisions, which is under consideration.
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